434 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

Low-Cost High-Performance VLSI Architecture for
Montgomery Modular Multiplication

Shiann-Rong Kuang, Member, IEEE, Kun-Yi Wu, and Ren-Yao Lu

Abstract—This paper proposes a simple and efficient
Montgomery multiplication algorithm such that the low-cost
and high-performance Montgomery modular multiplier can be
implemented accordingly. The proposed multiplier receives and
outputs the data with binary representation and uses only
one-level carry-save adder (CSA) to avoid the carry propagation
at each addition operation. This CSA is also used to perform
operand precomputation and format conversion from the carry-
save format to the binary representation, leading to a low
hardware cost and short critical path delay at the expense of
extra clock cycles for completing one modular multiplication.
To overcome the weakness, a configurable CSA (CCSA), which
could be one full-adder or two serial half-adders, is proposed to
reduce the extra clock cycles for operand precomputation and
format conversion by half. In addition, a mechanism that can
detect and skip the unnecessary carry-save addition operations
in the one-level CCSA architecture while maintaining the short
critical path delay is developed. As a result, the extra clock cycles
for operand precomputation and format conversion can be hidden
and high throughput can be obtained. Experimental results
show that the proposed Montgomery modular multiplier can
achieve higher performance and significant area—time product
improvement when compared with previous designs.

Index Terms— Carry-save addition, low-cost architecture,
Montgomery modular multiplier, public-key cryptosystem.

I. INTRODUCTION

N MANY public-key cryptosystems [1]-[3], modular

multiplication (MM) with large integers is the most critical
and time-consuming operation. Therefore, numerous algo-
rithms and hardware implementation have been presented to
carry out the MM more quickly, and Montgomery’s algorithm
is one of the most well-known MM algorithms. Montgomery’s
algorithm [4] determines the quotient only depending on the
least significant digit of operands and replaces the complicated
division in conventional MM with a series of shifting modular
additions to produce S = A x B x R~! (mod N), where N is
the k-bit modulus, R~! is the inverse of R modulo N, and
R =2F mod N. As a result, it can be easily implemented into
VLSI circuits to speed up the encryption/decryption process.
However, the three-operand addition in the iteration loop
of Montgomery’s algorithm as shown in step 4 of Fig. 1
requires long carry propagation for large operands in binary
representation. To solve this problem, several approaches

Manuscript received July 31, 2014; revised November 1, 2014 and
January 10, 2015; accepted February 17, 2015. Date of publication March 13,
2015; date of current version January 19, 2016.

The authors are with the Department of Computer Science and
Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan
(e-mail: srkuang@cse.nsysu.edu.tw; d963040012 @student.nsysu.edu.tw;
m013040038 @gmail.com).

Digital Object Identifier 10.1109/TVLSIL.2015.2409113

Algorithm MM:

Radix-2 Montgomery modular multiplication
Inputs : A, B, N (modulus)

Output : S[k]

1. S[0]=0;
2. fori=0tok—1{
3. qi = (S[i]o + 4; x By) mod 2;
4, S[i+1]=(S[i]+A4AxB+q;xN)/2;
5.}
6. if (S[k] = N) S[k] = S[k] — N;
7. return S[k];
Fig. 1. MM algorithm.

based on carry-save addition were proposed to achieve a
significant speedup of Montgomery MM. Based on the repre-
sentation of input and output operands, these approaches can
be roughly divided into semi-carry-save (SCS) strategy and
full carry-save (FCS) strategy.

In the SCS strategy [5]-[8], the input and output operands
(i.e., A, B, N, and §) of the Montgomery MM are represented
in binary, but intermediate results of shifting modular additions
are kept in the carry-save format to avoid the carry propa-
gation. However, the format conversion from the carry-save
format of the final modular product into its binary representa-
tion is needed at the end of each MM. This conversion can be
accomplished by an extra carry propagation adder (CPA) [5] or
reusing the carry-save adder (CSA) architecture [8] iteratively.
Contrary to the SCS strategy, the FCS strategy [9], [10]
maintains the input and output operands A, B, and S in
the carry-save format, denoted as (AS, AC), (BS, BC), and
(SS, SO), respectively, to avoid the format conversion, leading
to fewer clock cycles for completing a MM. Nevertheless,
this strategy implies that the number of operands will increase
and that more CSAs and registers for dealing with these
operands are required. Therefore, the FCS-based Montgomery
modular multipliers possibly have higher hardware
complexity and longer critical path than the SCS-based
multipliers.

Kuang et al. [10] have proposed an energy-efficient
FCS-based multiplier (denoted as FCS-MMM42 multiplier)
in which the superfluous operations of the four-to-two
(two-level) CSA architecture are suppressed to reduce the
energy dissipation and enhance the throughput. However,
the FCS-MMM42 multiplier still suffers from the high area
complexity and long critical path delay. Other techniques, such

1063-8210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

KUANG et al.: LOW-COST HIGH-PERFORMANCE VLSI ARCHITECTURE FOR MONTGOMERY MM 435

as parallelization, high-radix algorithm, and systolic array
design [11]-[19], can be combined with the CSA architecture
to further enhance the performance of Montgomery
multipliers. However, these techniques probably cause a
large increase in hardware complexity and power/energy
dissipation [20], [21], which is undesirable for portable
systems with constrained resources.

Accordingly, this paper aims at enhancing the performance
of CSA-based Montgomery multiplier while maintaining low
hardware complexity. Instead of the FCS-based multiplier
with two-level CSA architecture in [10], a new SCS-based
Montgomery MM algorithm and its corresponding hardware
architecture with only one-level CSA are proposed in this
paper. The proposed algorithm and hardware architecture
have the following several advantages and novel contributions
over previous designs. First, the one-level CSA is utilized
to perform not only the addition operations in the iteration
loop of Montgomery’s algorithm but also B + N and the
format conversion, leading to a very short critical path and
lower hardware cost. However, a lot of extra clock cycles
are required to carry out B + N and the format conversion
via the one-level CSA architecture. Therefore, the benefit of
short critical path will be lessened. To overcome the weakness,
we then modify the one-level CSA architecture to be able
to perform one three-input carry-save addition or two serial
two-input carry-save additions, so that the extra clock cycles
for B + N and the format conversion can be reduced by
half. Finally, the condition and detection circuit, which are
different with that of FCS-MMM42 multiplier in [10], are
developed to precompute quotients and skip the unnecessary
carry-save addition operations in the one-level configurable
CSA (CCSA) architecture while keeping a short critical path
delay. Therefore, the required clock cycles for completing one
MM operation can be significantly reduced. As a result, the
proposed Montgomery multiplier can obtain higher throughput
and much smaller area-time product (ATP) than previous
Montgomery multipliers.

The remainder of this paper is organized as follows.
Section II briefly reviews several radix-2 Montgomery
MM algorithms. In Section III, we propose a simple
and efficient SCS-based Montgomery MM algorithm and
its hardware architecture. The comparisons of different
Montgomery multipliers are made in Section IV. Finally, the
conclusion is drawn in Section V.

II. MODULAR MULTIPLICATION ALGORITHMS
A. Montgomery Multiplication

Fig. 1 shows the radix-2 version of the Montgomery
MM algorithm (denoted as MM algorithm). As mentioned
earlier, the Montgomery modular product § of A and B can
be obtained as S = A x B x R! (mod N), where R~ is
the inverse of R modulo N. That is, R x R~! = 1 (mod N).
Note that, the notation X; in Fig. 1 shows the ith bit of X in
binary representation. In addition, the notation X;.; indicates
a segment of X from the ith bit to jth bit.

Since the convergence range of S in MM algorithm is
0 < § < 2N, an additional operation S = S — N is required

Algorithm SCS-based MM:

SCS-based Montgomery multiplication

Inputs : A, B, N (modulus)

Outputs : S[k+2]

. SS[0]1=0; SC[0]=0;

L fori=0tok+1{

q; = (SS[i]o + SC[i]o + A; % By) mod 2;

(SS[i+1], SC[i+1]) = (SS[i]+SCl[i] +4; xB+q; xN) / 2;

.
. S[k+2] = SS[k+2] + SC[k+2];
return S[k+2];

R

Fig. 2. SCS-based Montgomery multiplication algorithm.

A Jb 8)
T

| CSA2 |

SCTi+1]] SS[i+1]

¢ 3 S[k+2]

Sl |

Fig. 3. SCS-MM-1 multiplier.

to remove the oversize residue if S > N. To eliminate the final
comparison and subtraction in step 6 of Fig. 1, Walter [22]
changed the number of iterations and the value of R to k 42
and 2Kt2 mod N, respectively. Nevertheless, the long carry
propagation for the very large operand addition still restricts
the performance of MM algorithm.

B. SCS-Based Montgomery Multiplication

To avoid the long carry propagation, the intermediate result
S of shifting modular addition can be kept in the carry-save
representation (SS, SC), as shown in Fig. 2. Note that the
number of iterations in Fig. 2 has been changed from k to
k 4+ 2 to remove the final comparison and subtraction [22].
However, the format conversion from the carry-save format of
the final modular product into its binary format is needed, as
shown in step 6 of Fig. 2. Fig. 3 shows the architecture of
SCS-based MM algorithm proposed in [5] (denoted as
SCS-MM-1 multiplier) composed of one two-level CSA archi-
tecture and one format converter, where the dashed line
denotes a 1-bit signal. In [5], a 32-bit CPA with multiplexers
and registers (denoted as CPA_FC), which adds two 32-bit
inputs and generates a 32-bit output at every clock cycle,
was adopted for the format conversion. Therefore, the 32-bit
CPA_FC will take 32 clock cycles to complete the format con-
version of a 1024-bit SCS-based Montgomery multiplication.
The extra CPA_FC probably enlarges the area and the critical
path of the SCS-MM-1 multiplier.

The works in [6] and [7] precomputed D = B 4+ N so that
the computation of A; X B + ¢; x N in step 4 of Fig. 2
can be simplified into one selection operation. One of the

436

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

TABLE I
ANALYSIS OF AREA AND DELAY OF DIFFERENT DESIGNS

Multiplier FC Area Complexity Area Ratio Critical Path Delay Delay Ratio
SCS-MM-1 [5] Yes 2kxApa + 4kxArgc + kxAsg + Acpa re 6.76kxApa* max(2xTanp + 2xTra, (CPA_FC)) 2.68xTpa*
SCS-MM-2 [8] Yes ZkXAFA + 4kXAREG + kXAsR + ZkXAANI)+ 3k><AMUX2 8‘24k><AFA 2% TMUX2 + TANI) + 2% T]:A 3.24x% TFA
FCS-MM-1 [9] No 3k xApa + SkxArgc + 2kxAsg + 3kxAanp 10.48kxApp 2xTxor + Tanp + 3% Tga 4.02xTra
FCS-MM-2 [9] No 2kxApa + ThxArgg + 2kxAsg + 2kxAmuxa 12.56/kxAra 2xTxor + Tanp + Twmuxa + 2xTra 3.73xTra
*: the ratio does not consider the extra CPA_FC

>i1 Algorithm FCS-MM-1:

$ Sh2]

Fig. 4. SCS-MM-2 multiplier.

operands 0, N, B, and D will be chosen if (A;, ¢;) = (0, 0),
(0, 1), (1, 0), and (1, 1), respectively. As a result, only one-level
CSA architecture is required in this multiplier to perform
the carry-save addition at the expense of one extra 4-to-1
multiplexer and one additional register to store the operand D.
However, they did not present an effective approach to remove
the CPA_FC for format conversion and thus this kind of
multiplier still suffers from the critical path of CPA_FC.

On the other hand, Zhang et al. [8] reused the two-level
CSA architecture to perform the format conversion so that the
CPA_FC can be removed. That is, S[k + 2] = SS[k + 2] +
SClk + 2] in step 6 of Fig. 2 is replaced with the repeated
carry-save addition operation (SS[k + 2], SC[k + 2]) =
SSk + 2] + SC[k + 2] until SC[k + 2] = 0. Fig. 4
shows the architecture of the Montgomery multiplier proposed
in [8] (denoted as SCS-MM-2 multiplier). Note that the select
signals of multiplexers M and M2 in Fig. 4 generated by
the control part are not shown in Fig. 4 for the sake of
simplicity. However, the extra clock cycles for format conver-
sion are dependent on the longest carry propagation chain in
SS[k+2]4SC[k+2] and about k/2 clock cycles are required in
the worst case because two-level CSA architecture is adopted
in [8].

C. FCS-Based Montgomery Multiplication

To avoid the format conversion, FCS-based Montgomery
multiplication maintains A, B, and S in the carry-
save representations (AS, AC), (BS, BC), and (SS, SC),
respectively. Mclvor et al. [9] proposed two FCS-
based Montgomery multipliers, denoted as FCS-MM-1
and FCS-MM-2 multipliers, composed of one five-to-
two (three-level) and one four-to-two (two-level) CSA
architecture, respectively. The algorithm and architecture of
the FCS-MM-1 multiplier are shown in Figs. 5 and 6,
respectively. The barrel register full adder (BRFA)

FCS-based Montgomery multiplication
Inputs : AS, AC, BS, BC, N (modulus)
Outputs : SS[k+2], SC[k+2]

1. SS[0]=0; SC[0] = 0;
2. fori=0tok+1{
3. qi=(SS[i]o + SC[i]o + A; x (BS, + BCy)) mod 2;
4. (SS[i+1], SC[i+1]) = (SS[i] + SC[i] + 4, x (BS + BC)
+qixN) /2
5.}
6. return SS[k+2], SC[k+2];
Fig. 5. FCS-MM-1 Montgomery multiplication algorithm.
68s) bsc)] b N) pBrRFA
sci| sst| 9 YT Ai
| CSA1 |
' I N ! qi
| CSA2 |
3 3
| CSA3 |
SCTi+17 § v SS[it1]
 sc e Ss
® °
v v

Fig. 6. FCS-MM-1 multiplier.

in Fig. 6 consists of two shift registers for storing AS
and AC, a full adder (FA), and a flip-flop (FF). For more
details about BRFA, please refer to [9] and [10].

On the other hand, the FCS-MM-2 multiplier proposed
in [9] adds up BS, BC, and N into DS and DC at the beginning
of each MM. Therefore, the depth of the CSA tree can be
reduced from three to two levels. Nevertheless, the FCS-MM-2
multiplier needs two extra 4-to-1 multiplexers addressed by
A; and ¢; and two more registers to store DS and DC
to reduce one level of CSA tree. Therefore, the critical
path of the FCS-MM-2 multiplier may be slightly reduced
with a significant increase in hardware area when compared
with the FCS-MM-1 multiplier.

Table 1 summarizes and roughly compares the area
complexity and critical path delay of the above-mentioned
radix-2 Montgomery multipliers according to the normal-
ized area and delay listed in Table II with respect to
the TSMC 90-nm cell library information. In Table I, the

KUANG et al.: LOW-COST HIGH-PERFORMANCE VLSI ARCHITECTURE FOR MONTGOMERY MM 437
TABLE II
NORMALIZED AREA AND DELAY OF THE STANDARD CELLS
Cell FA REG 2-input 2-input 3-input 3-input 2-input 2-input 3-input 2-to-1* 2-to-1 3-to-1 4-to-1
NAND NOR NAND NOR AND XOR XOR MUXI MUX MUX MUX
Area ratio 1.00 0.88 0.16 0.16 0.20 0.20 0.20 0.32 0.68 0.32 0.36 0.72 0.96
Delay ratio 1.00 0.12 0.16 0.20 0.32 0.34 0.34 0.93 0.23 0.45 0.63 0.71

*: the MUXI cell is a multiplexer with inverted output

notations Ag and Tg denote the area and delay of a cell G,
respectively, and 7(Q) denotes the critical path delay of
circuit €. Note that Asg in Table I denotes the area of a
shift register, and we assume that Asr is approximate to the
sum of Argg and Amuxz. In addition, the area and delay
ratios of the SCS-MM-1 multiplier in Table I do not take
that of CPA_FC into consideration because they are signifi-
cantly dependent on the design of CPA_FC. Generally speak-
ing, SCS-based multipliers have lower area complexity than
FCS-based Montgomery multipliers. However, extra clock
cycles for format conversion possibly lower the performance of
SCS-based multipliers. To further enhance the performance of
the SCS-based multiplier, both the critical path delay and clock
cycles for completing one multiplication must be reduced
while maintaining the low hardware complexity.

III. PROPOSED MONTGOMERY MULTIPLICATION

In this section, we propose a new SCS-based Montgomery
MM algorithm to reduce the critical path delay of Montgomery
multiplier. In addition, the drawback of more clock cycles
for completing one multiplication is also improved while
maintaining the advantages of short critical path delay and
low hardware complexity.

A. Critical Path Delay Reduction

The critical path delay of SCS-based multiplier can be
reduced by combining the advantages of FCS-MM-2 and
SCS-MM-2. That is, we can precompute D = B + N and
reuse the one-level CSA architecture to perform B+ N and the
format conversion. Fig. 7(a) and (b) shows the modified
SCS-based Montgomery multiplication (MSCS-MM)
algorithm and one possible hardware architecture, respectively.
The Zero_D circuit in Fig. 7(b) is used to detect whether
SC is equal to zero, which can be accomplished using
one NOR operation. The Q_L circuit decides the ¢g; value
according to step 7 of Fig. 7(a). The carry propagation
addition operations of B + N and the format conversion
are performed by the one-level CSA architecture of the
MSCS-MM multiplier through repeatedly executing the
carry-save addition (SS, SC) = §S 4+ SC + 0 until SC = 0.
In addition, we also precompute A; and ¢; in iteration i—1
(this will be explained more clearly in Section III-C)
so that they can be used to immediately select the
desired input operand from O, N, B, and D through
the multiplexer M3 in iteration i. Therefore, the critical
path delay of the MSCS-MM multiplier can be reduced
into Tivuxsa + Tra. However, in addition to performing the

Algorithm Modified SCS-MM:

Modified SCS-based Montgomery multiplication
Inputs : A, B, N (modulus)

Output : SS[k+2]

1. (8S,8C)=(B+N+0);
2. while (SC = 0)

3 (SS, SC) = (SS + SC + 0);
4. D=SS;

5. SS[0]=0; SC[0]=0;
6

7

8

9

fori=0tok+1 {
q; = (SS[i]o + SC[i]o + 4; x By) mod 2;
if(4,=0and ¢;=0) x=0;
. if(4,=0andg;=1) x=N;
10. if(4,=1and ¢;=0) x=B5;
11. if(4,=1and¢;=1) x=D;
12. (SS[i+1], SC[i+1]) = (SS[i] + SC[i] +x) / 2;

}
14. while (SC[k+2] !=0)
15. (SS[k+2], SC[k+2]) = (SS[k+2] + SC[£+2] + 0);
16. return SS[k+2];

(a)
k2 Jk " Je 8 e o
1 g 1‘ i y 03 vy
\M1/ \ M2/ &}q’; M3/
| CSA |

¥ SS[k+2]
(b)

Fig. 7. (a) Modified SCS-based Montgomery multiplication algorithm. (b)
MSCS-MM multiplier.

three-input carry-save additions [i.e., step 12 of Fig. 7(a)]
k + 2 times, many extra clock cycles are required to
perform B 4+ N and the format conversion via the one-level
CSA architecture because they must be performed once in
every MM. Furthermore, the extra clock cycles for performing
B+ N and the format conversion through repeatedly executing
the carry-save addition (SS, SC) = S§S+ SC + 0 are dependent
on the longest carry propagation chain in S§S + SC.
If S§ = 111...111 and SC = 000...001,, the one-level
CSA architecture needs k clock cycles to complete SS + SC.

438 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

SClilje1 Niet SSlilje1 Bjet sci; N, SSIiY; B

>k1 >k

SCli; Ny SSIi); By
=R |

(d)

Fig. 8. (a) Conventional FA circuit. (b) Proposed CFA circuit. (c) Two serial
HAs. (d) Simplified multiplexer SM3.

That is, ~3k clock cycles in the worst case are required for
completing one MM. Thus, it is critical to reduce the required
clock cycles of the MSCS-MM multiplier.

B. Clock Cycle Number Reduction

To decrease the clock cycle number, a CCSA architecture
which can perform one three-input carry-save addition or two
serial two-input carry-save additions is proposed to substitute
for the one-level CSA architecture in Fig. 7(b). Fig. 8(a) shows
two cells of the one-level CSA architecture in Fig. 7(b), each
cell is one conventional FA which can perform the three-input
carry-save addition. Fig. 8(b) shows two cells of the proposed
configurable FA (CFA) circuit. If « = 1, CFA is one FA
and can perform one three-input carry-save addition (denoted
as 1F_CSA). Otherwise, it is two half-adders (HAs) and can
perform two serial two-input carry-save additions (denoted as
2H_CSA), as shown in Fig. 8(c). In this case, G1 of CFA;
and G2 of CFA 4 in Fig. 8(b) will act as HA1; in Fig. 8(c),
and G3, G4, and G5 of CFA; in Fig. 8(b) will behave as
HAZ2; in Fig. 8(c). Moreover, we modify the 4-to-1 multiplexer
M3 in Fig. 7(b) into a simplified multiplier SM3 as shown
in Fig. 8(d) because one of its inputs is zero, where ~ denotes
the INVERT operation. Note that M3 has been replaced

SS[il+1 SSUlk -+« SSlilz SS[il1 SSlilo
SClilk+1 SClilk SClil2 SClils SClilo
Xk+1 Xk .. X2 X1 Xo

SS[i+1lc SS[i+ 1t - - -
SCli+1]ks1 SCLi+ 11k SCli+1]ir * *

SS[i+1]1 SS[i+1]o 0
SCli+1]: SCli+1]o

Fig. 9. Three-to-two carry-save addition at the ith iteration of Fig. 7.

by SM3 in the proposed one-level CCSA architecture shown in
Fig. 8(b). According to the delay ratio shown in Table II, Tsps3
(i.e., 0.68 x Tga) is approximate to Tyuxs (i-e., 0.63 x Tga)
and Tmuxe (.e., 0.23 x Tga) is smaller than Txor2
(i.e., 0.34xTgas). Therefore, the critical path delay of the
proposed one-level CCSA architecture in Fig. 8(b) is approx-
imate to that of the one-level CSA architecture in Fig. 8(a).
As a result, steps 3 and 15 of Fig. 7(a) can be replaced with
(8§, SC) = 2H_CSA(SS, SC) and (SS[k + 2], SC[k + 2]) =
2H_CSA (SS[k + 2], SC[k + 2]) to reduce the required clock
cycles by approximately a factor of two while maintaining a
short critical path delay.

In addition, we also skip the unnecessary operations in the
for loop (steps 6 to 13) of Fig. 7(a) to further decrease the
clock cycles for completing one Montgomery MM. The crucial
computation in the for loop of Fig. 7(a) is performing the
following three-to-two carry-save addition:

(SS[i + 11, SC[i + 11) = (SS[i]1 + SCli] + x)/2 (1)

where the variable x may be 0, N, B, or D depending on the
values of A; and ¢;. The computation process of (1) is shown
in Fig. 9. When A; = 0 and ¢; = 0, x is equal to O and
SS[i]o must be equal to SC[i]p because the sum of SS[i]y +
SClilo + xo is equal to 0. That is, if A; =0 and ¢; = 0, then
SS[i]o = SCli]o. Based on this observation, we can conclude
that the sum of the carry propagation addition SS[i + 1]x+1.0 +
SC[i 4 1]k+1.0 is equal to the sum of the carry propagation
addition SS[ilg+1:1 + SClilk+1:1 when A; = ¢g; = 0 and
SS[ilo = SC[ilp = 0. As a result, the computation of (1) in
iteration i can be skipped if we directly right shift the outputs
of one-level CSA architecture in the (i — 1)th iteration by
two bit positions (i.e., divided by 4) instead of one bit
position (i.e., divided by 2) when A;, = ¢; = 0 and
SS[ilo = SC[ilo = O.

Accordingly, the signal skip;+; used in the ith iteration
to indicate whether the carry-save addition in the (i + 1)th
iteration will be skipped can be expressed as

skip; ;1 =~ (Aiy1V git1 Vv SS[i + 1]o) (2)

where V represents the OR operation. If skip;y; generated in
the ith iteration is 0, the carry-save addition of the (i 4+ 1)th
iteration will not be skipped. In this case, g;+1 and A;i
produced in the ith iteration can be stored in FFs and then used
to fast select the value of x in the (i + 1)th iteration. Otherwise
(i.e., skipj+1 = 1), SS[i + 1] and SC[i + 1] produced in the
ith iteration must be right shifted by two bit positions and
the next clock cycle will go to iteration i 4+ 2 to skip the
carry-save addition of the (i + I)th iteration. In this

KUANG et al.: LOW-COST HIGH-PERFORMANCE VLSI ARCHITECTURE FOR MONTGOMERY MM 439

situation, not only ¢;y1 and A;4; but also ¢ij;» and
A;42 must be produced and stored to FFs in the
ith iteration to immediately select the value of x in the
(i + 2)th iteration without lengthening the critical path.
Therefore, the selection signals (denoted as ¢ and A)
for choosing the proper value of x in the next clock
cycle must be picked from (g;+1, Ai+1) or (gi+2, Ait2)
according to the skip;y; signal produced in the
ith iteration. That is, (G, A) = (gis2, Aiy2) if skipipg = 1.
Otherwise, (¢, A) = (gi+1, Ai+1)-

C. Quotient Precomputation

As mentioned above, A;jt+1, Aij+2, ¢gi+1, and ¢y must
be known in the ith iteration for skipping the unnecessary
operation in the (i 4+ 1)th iteration. It is easy to obtain A;4 and
Aj4> in the ith iteration. The quotient ¢;+1 can be computed
in the ith iteration similar to step 7 of Fig. 7(a) as follows:

gi+1 = (SS[i + 110 + SC[i + 110 + Ai+1 X Bg) mod 2. (3)

However, SS[i + 1]o and SC[i + 1]o are unavailable until (1) is
completed, as shown in Fig. 9. Therefore, the critical path of
Montgomery multiplier in Fig. 7(b) will be largely lengthened
if (3) is directly used to produce g;4+;1 in the ith iteration.
To avoid this situation, N, B, and D are modified as follows
so that SS[i + 1]o, SC[i + 1]o, gi+1, and gj+> can be quickly
generated in the ith iteration.

Since modulus N is an odd number and is added in the
ith iteration only when ¢; is equal to one, it is found that at
least a propagated carry 1 is generated since Ny is equal to
one. Therefore, we can directly employ the value N as shown
in (4) instead of N to accomplish the process of Montgomery
MM. Afterward, Nm must be equal to zero

o Nl N =1
3N +1, if Ny = O0l.

“)

Moreover, we employ B = 8B instead of B to ensure that
ﬁz;o is equal to zero so that A; 41 X Bp in (3) can be eliminated
and the computation of g;4+» can also be simplified. Note that
three extra clock cycles at the end of MM for computing
division by two are necessary to maintain the correctness of
Montgomery MM because B is replaced with 8B. If N and
B are replaced by N and B, the produced Dio(D=N+ é)
must be equal to zero.

After N, B, and D are replaced by N, é, and ﬁ, we can
ensure that the two LSBs of variable x (i.e., x1:0) in (1) must
be equal to zero. As a result, the carry value SC[i+1]o in Fig. 9
is equal to SS[i]o A SC[i]o since xo = 0, where A denotes the
AND operation. Moreover, the sum value SS[i 4+ 1]op in Fig. 9
is equal to SS[i]; @ SC[i]; because x; = 0, where & is the
XOR operation. According to the above results, the logic
expression in (3) for generating ¢;+ in the ith iteration can
be rewritten as

gi+1 = (SS[ili ® SClil) & (SS[ilo A SClilo). (5)

Similar to (3), the quotient g;4, can be generated in the
ith iteration by the following equation:

gi+2 = (SS[i 4+ 2]o + SC[i + 2]o) mod 2. (6)

The gi+2 will be selected in the ith iteration only when
skip;+1 = 1. In this case, Aj+1 = gi+1 = 0 and SS[i + 1]p =
SC[i + 1]p = 0 so that SS[i 4+ 2]o + SC[i + 2]o in Fig. 9
is equal to SS[i + 1]; + SC[i + 1];. Because x; = 0,
SCli 4+ 111 = SS[i11ASC[i]1. Moreover, SS[i + 1]; is equal
to SS[i]2®SC[i]2 @ x» and x, is equal to O, 1%, 0, or N,
when (4;, ¢;) = (0,0), (0, 1), (1, 0), or (1, 1). Therefore, we
can obtain that xp = g; A 1%. As a result, (6) can be simplified
and expressed as

itz = (SS[iL ® SClil2) ® (g A N2) @ (SS[ily A SCIily).
@)

In addition to ¢g;y; and g;4+» can be simplified into
(5) and (7), we can also derive a simpler expression for skip; 11
in (2). Let 61 = SS[i]; @ SC[i]; and dyp = SS[i]o A SCli]o,
then

skip; ;| = ~ (Ai41 V giy1 VvV SS[i + 1]o)
=~ (Ai11 V(01 © do) V 1)
=~ (Ai+l VoV 5())
=~ (A1 V (SS[i]1 @ SC[i]1) Vv (SS[ilo A SClilo)).
(8)

According to (8), we can quickly obtain skip;;; in the ith
iteration by SS[i];, SC[i]1, SS[ilo, and SC[i]p.

D. Proposed Algorithm and Hardware Architecture

On the bases of critical path delay reduction, clock cycle
number reduction, and quotient precomputation mentioned
above, a new SCS-based Montgomery MM algorithm
(i.e., SCS-MM-New algorithm shown in Fig. 10) using
one-level CCSA architecture is proposed to significantly
reduce the required clock cycles for completing one MM.
As shown in SCS-MM-New algorithm, steps 1-5 for
producing B and D are first performed. Note that because
gi+1 and ¢g;1p must be generated in the ith iteration,
the iterative index i of Montgomery MM will start from
—1 instead of 0 and the corresponding initial values of
g and A must be set to 0. Furthermore, the original for loop
is replaced with the while loop in SCS-MM-New algorithm
to skip some unnecessary iterations when skip;+; = 1.
In addition, the ending number of iterations in SCS-MM-New
algorithm is changed to k + 4 instead of k + 1 in Fig. 7(a).
This is because B is replaced with B and thus three extra
iterations for computing division by two are necessary to
ensure the correctness of Montgomery MM. In the while loop,
steps 8—12 will be performed in the proposed one-level CCSA
architecture with one 4-to-1 multiplexer. The computations
of gi+1, qi+2, and skip;4+1 in step 13 and the selections of
A, g, and i in steps 14-20 can be carried out in parallel
with steps 8-12. Note that the right-shift operations of
steps 12 and 15 will be delayed to next clock cycle to reduce
the critical path delay of corresponding hardware architecture.

The hardware architecture of SCS-MM-New algorithm,
denoted as SCS-MM-New multiplier, are shown in Fig. 11,
which consists of one one-level CCSA architecture,
two 4-to-1 multiplexers (i.e., M1 and M2), one simplified

440 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

Algorithm SCS-MM-New:
Proposed SCS-based Montgomery multiplication

Inputs :A,B, N (new modulus)
Output : SS[k+5]

1. B=B<<3; §=0; A=0; skipi,=0
2. (S8S,8C)=1F _CSA(B, N, 0);

3. while (SC !=0)

4. (SS, SC) = 2H_CSA(SS, SC);

5. D =S§S;

6. i=-1; SS[-11=0; SC[-1]=0;

7. while (i<k+4){

8. if(A=0and ¢=0) x=0;

9. if(A=0and g=1) x=N;

10. if(A=1and g=0) x=58;

11. if(A=1and g=1) x=D;

12. (SS[i+1], SC[i+1]) = IF_CSA(SS[i], SC[i], x)>>1;
13. compute g;+1, ¢;+, and skip;+; by (5), (7) and (8);
14. if (skip;+1 = 1){

15. SS[i+2] = SS[i+1]>>1; SC[i+2] = SC[i+1]>>1;
16. G =qi; A=A i=i+2;

17. 1}

18. else{

19. G =qim; A=Ap; i=i+]1;

20,)

21.)

22. ¢=0; A=0;

23. while (SC[k+5] !=0)

24. (SS[k+5], SC[k+5]) =2H_CSA(SS[k+5], SC[£+5]);
25. return SS[k+5];

Fig. 10. SCS-MM-New algorithm.

e Je s Jeo Jq

““““ iaiul Safntuiiatnieieinteieiainininis. Slaie
-F-Ft-t-----1 D *--
s REEE EE A > >b2 >xl >p2
1! > | ¥, ¥ ¥
> i —->\M4/->\ M5,
vy ! --I--
T P ' e o |
\T/ \T/M2 \‘gf;?/t:-'--i I? 1 i S [I]zol
[ﬂ - . : SS[I]z:o
CCSA i ;o"/! Sklp/+1 'A v *
hllk) ? i Skip_D i
4 A ' f L Y
E SC bgs_] o A1 ! U Ais2
* =|Zero_D E A
v SS[k+5] \]

Fig. 11. SCS-MM-New multiplier.

multiplier SM3, one skip detector Skip_D, one zero detector
Zero_D, and six registers. Skip_D is developed to generate
skipi+1, ¢, and A in the ith iteration. Both M4 and M5
in Fig. 11 are 3-bit 2-to-1 multiplexers and they are much
smaller than k-bit multiplexers M1, M2, and SM3. In addition,
the area of Skip_D is negligible when compared with that
of the k-bit one-level CCSA architecture. Similar to Fig. 4,
the select signals of multiplexers M/ and M2 in Fig. 11 are
generated by the control part, which are not depicted for the
sake of simplicity.

N2 G SS[i]2SC[il SS[il1 SCI[il1 SS[ilo SClilo Ai+1 A,+2
[[1 1 (- 1
. Co ®----- » . i I
[[1 === >® [: :
_____ [!
oo limmeees S e E Y P
1 1
1 1
\J Uq "/ L
Qi+2, r==—m—-m—————= i+1 :
Skip_D N\ _Y<---------moooo-
i q :Sklpf+1 iA
v v v
Fig. 12. Skip detector Skip_D.

At the beginning of Montgomery multiplication, the FFs
stored skipj+1, 4, A are first reset to 0 as shown in step 1 of
SCS-MM-New algorithm so that D = B+N canbe computed
via the one-level CCSA architecture. When performing the
while loop, the skip detector Skip_D shown in Fig. 12 is
used to produce skip;+1, ¢, and A. The Skip_D is composed
of four XOR gates, three AND gates, one NOR gate, and
two 2-to-1 multiplexers. It first generates the ¢;+1, gi+2, and
skip;+1 signal in the ith iteration according to (5), (7), and (8),
respectively, and then selects the correct ¢ and A according to
skip;+1. At the end of the ith iteration, g, A, and skip; 1 must
be stored to FFs. In the next clock cycle of the ith iteration,
SM3 outputs a proper x according to § and A generated in
the ith iteration as shown in steps 8-11, and M/ and M2
output the correct SC and SS according to skip;+| generated
in the ith iteration. If skip;1; = 0, SC > 1 and SS > 1 are
selected. Otherwise, SC > 2 and SS > 2 are selected. That
is, the right-shift 1-bit operations in steps 12 and 15 of
SCS-MM-New algorithm are performed together in the next
clock cycle of iteration i. In addition, M4 and M5 also
select and output the correct SC[i]».0 and SS[i]2.0 according
to skip;y; generated in the ith iteration. Note that
SClilo:0 and SS[i]2:0 can also be obtained from M1 and M2 but
a longer delay is required because they are 4-to-1 multiplexers.
After the while loop in steps 7-21 is completed, ¢ and A
stored in FFs are reset to 0. Then, the format conversion
in steps 23 and 24 can be performed by the SCS-MM-New
multiplier similar to the computation of D = B+ N in
steps 3 and 4. Finally, SS[k + 5] in binary format is outputted
when SC[k + 5] is equal to O.

IV. EXPERIMENTAL RESULTS

In this section, we first analyze the critical path delay
and area of the proposed SCS-MM-New multiplier according
to the information listed in Table II. Then, the delay and
area are compared with that of previous designs. In addition,
the average clock cycles of different Montgomery multipliers
to complete one MM operation are also measured. Finally,
several Montgomery multipliers are implemented and synthe-
sized to demonstrate the efficiency of the proposed approach.

A. Analysis of Delay, Area, and Clock Cycle Number

As shown in Figs. 11 and 12, the maximum delay
for generating ¢ through M4, M5, and Skip_D is

KUANG et al.: LOW-COST HIGH-PERFORMANCE VLSI ARCHITECTURE FOR MONTGOMERY MM

441

TABLE III
COMPARISONS OF DIFFERENT MONTGOMERY MULTIPLIERS WITH 1024- AND 2048-BIT KEY SI1ZES

Key AC Delay

Area Time Throughput ATP

Size Multiplier #Cycle (%) (ns) (um’) (us) Rate (Mbps) (10° pm?’x u1s)
SCS-MM-1(32) [5] 1072 +4.2 4.93 487171 5.2850 193.8 2574.68
SCS-MM-2 [8] 1049 +1.9 5.60 406127 5.8744 1743 2385.75

1024 FCS-MM-1 [9] 1029 5.80 518214 5.9682 171.6 3092.80
FCS-MM-2 [9] 1029 - 6.01 677121 6.1843 165.6 4187.51
FCS-MMM42 [10] 822 -20.1 5.56 749076 4.5703 224.1 3423.52
SCS-MM-New 880 -14.5 4.00 498379 3.5200 290.9 1754.29
SCS-MM-1(32) [5] 2128 +3.7 5.28 956484 11.2358 182.3 10746.90
SCS-MM-1(64) [5] 2096 +2.1 6.53 660156 13.6869 149.6 9035.48
SCS-MM-2 [8] 2071 +0.9 5.92 732502 12.2603 167.0 8980.71

2048 FCS-MM-1 [9] 2053 6.00 1007807 12.3180 166.3 12414.17
FCS-MM-2 [9] 2053 - 5.96 1347114 12.2359 167.4 16483.13
FCS-MMM42 [10] 1636 -20.3 5.68 1448068 9.2925 220.4 13456.14
SCS-MM-New 1734 -15.5 4.41 950184 7.6469 267.8 7266.00

Tmux2 + Txor2 + Txorz + Tmuxe. According to Table II,
the maximum delay for generating ¢ will be 2.17xTga.
Moreover, Tsy3 and Tvuxne are less than Tyvuxs and Txor2,
respectively, as mentioned in Section III-B. Therefore,
the maximum delay of the one-level CCSA architecture
in Fig. 11 for generating SS and SC is approximate
to Tmuxa + Tra (.e., 1.71 x Tpa). As a result, the
critical path delay of the SCS-MM-New multiplier is
2.17 x Tga, which is less than that of all Montgomery
multipliers listed in Table I. Furthermore, the critical
path delay of the FCS-MMM42 multiplier in [10] is
Tmuxa + 2 X Tra (i.e., 2.71 x Tga), which is much longer
than that of the proposed SCS-MM-New multiplier.

On the other hand, the area complexity of SCS-MM-New
multiplier is k x Acpa + 5k X Argg + k x Asr + 2k x
Amuxa +k x Agpr3 according to Fig. 11. As shown in Fig. 8,
FA is modified into CFA at the expense of one 2-input
NAND gate and one 2-to-1 MUXI cell. Therefore, Acpa is
approximate to Apa + ANAND2 + Amuxne. In addition, Agp3
is approximate to AnanD2 + Amuxn: + AMux2, as shown
in Fig. 8(d). As a result, the area complexity of the proposed
SCS-MM-New multiplier will be approximate to 9.88k x Afa.
When compared with the previous multipliers listed in Table I,
the area of SCS-MM-New multiplier is larger than that of
SCS-MM-2 multiplier, but smaller than that of FCS-MM-1 and
FCS-MM-2 multipliers. In addition, the area complexity of the
FCS-MMM42 multiplier in [10] is 2k x Apa + 7k X ARgG +
2k x Asr + 2k x Amux2 + 2k x Amuxa (i.e., 13.28k x Afa),
which is much larger than that of the proposed SCS-MM-
New multiplier. Finally, if the nonconfigurable one-level CSA
architecture is used in the SCS-MM-New multiplier, its area
complexity will be reduced to 9.4k x Apa. That is, ~5%
additional area is required to form the CCSA architecture.

To evaluate the average clock cycles for completing
one Montgomery MM, the above-mentioned multipliers,
including SCS-MM-1 [5], SCS-MM-2 [8], FCS-MM-1 [9],
FCS-MM-2 [9], FCS-MMM42 [10], and the proposed
SCS-MM-New with 1024- and 2048-bit key sizes were
designed and specified in Verilog hardware description lan-
guage. Note that, we apply a carry-lookahead adder (CLA)

to carry out the format conversion in SCS-MM-1 because of
its reduced critical path delay. Moreover, SCS-MM-1(32) and
SCS-MM-1(64) denote that 32- and 64-bit CLA are adopted
for format conversion, respectively. The average clock cycles
of different multipliers for completing one Montgomery MM
(denoted as #Cycle) are measured and shown in Table III
through the simulation with 10000 random input patterns.
Note that AC in Table III denotes the cycle number incre-
ment when compared with FCS-MM-1 multiplier. As can
be seen from Table III, SCS-MM-1 and SCS-MM-2
multipliers need more clock cycles than FCS-MM-1 multiplier.
On the other hand, the proposed 1024- and 2048-bit
SCS-MM-New multipliers offer cycle number reductions of
14.5% and 15.5% over the FCS-MM-1 multiplier, respectively.
The FCS-MMM42 multiplier in [10] spends the least clock
cycles because no extra clock cycles for format conversion are
required.

B. Implementation Results

To further verify the efficiency of the proposed design,
we synthesized those Montgomery modular multipliers listed
in Table III by Synopsys Design Compiler with TSMC 90-nm
CMOS cell library. Subsequently, the Cadence SoC Encounter
was employed to perform the placement and routing. Delay
estimations were obtained behind RC extraction from the
placed and routed netlists. The implementation results, includ-
ing the critical path delay (Delay), the hardware area (Area),
the execution time (Time), and the throughput rate of these
modular multipliers are given in Table III. The execution time
is the required time to accomplish one Montgomery MM,
i.e., #Cycle x Delay. The throughput rate is formulated as the
key size multiplied by the frequency (the reciprocal of Delay)
and then divided by #Cycle.

As the results shown in Table III, the proposed
SCS-MM-New multiplier has the shortest critical path delay
and needs fewer clock cycles to complete one Montgomery
MM, and thus spends the least execution time and achieves
the highest throughput rate. Note that the critical path delay of
SCS-MM-1(64) is significantly lengthened by the

442 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 24, NO. 2, FEBRUARY 2016

64-bit CPA_FC. On the other hand, the SCS-MM-2 multiplier
generally has smaller area than other designs. The proposed
SCS-MM-New multiplier also needs more area than the
SCS-MM-2 multiplier due to extra multiplexers introduced to
shorten the critical path delay and reduce the required clock
cycles. Nevertheless, the area of the proposed SCS-MM-New
multiplier is still less than that of FCS-based multipliers.
As a consequence, SCS-MM-New can obtain the smallest
ATP than previous radix-2 Montgomery multipliers. When
compared with the FCS-MMM42 multiplier, the proposed
1024-bit (2048-bit) SCS-MM-New multiplier achieves
28.1% (22.4%) shorter critical path and 33.5% (34.4%)
smaller hardware area, leading to 29.8% (21.5%) throughput
enhancement and 48.8% (46.0%) ATP improvement.
The results in Table III are consistent with the analyses
in Section IV-A and show that the proposed approach is
indeed capable of significantly enhancing the performance of
radix-2 CSA-based Montgomery multiplier while maintaining
low hardware complexity.

V. CONCLUSION

FCS-based multipliers maintain the input and output
operands of the Montgomery MM in the carry-save format
to escape from the format conversion, leading to fewer clock
cycles but larger area than SCS-based multiplier. To enhance
the performance of Montgomery MM while maintaining
the low hardware complexity, this paper has modified the
SCS-based Montgomery multiplication algorithm and pro-
posed a low-cost and high-performance Montgomery modular
multiplier. The proposed multiplier used one-level CCSA
architecture and skipped the unnecessary carry-save addi-
tion operations to largely reduce the critical path delay and
required clock cycles for completing one MM operation.
Experimental results showed that the proposed approaches
are indeed capable of enhancing the performance of radix-2
CSA-based Montgomery multiplier while maintaining low
hardware complexity.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
many constructive comments and suggestions in improving
this paper. They would also like to thank the contributions
of Taiwan Semiconductor Manufacturing Company Limited
and National Chip Implementation Center, Taiwan, for their
support in technology data.

REFERENCES

[1] R.L.Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Commun. ACM, vol. 21, no. 2,
pp. 120-126, Feb. 1978.

[2] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances in
Cryptology. Berlin, Germany: Springer-Verlag, 1986, pp. 417-426.

[3] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol. 48,
no. 177, pp. 203-209, 1987.

[4] P.L.Montgomery, “Modular multiplication without trial division,” Math.
Comput., vol. 44, no. 170, pp. 519-521, Apr. 1985.

[5]1 Y. S. Kim, W. S. Kang, and J. R. Choi, “Asynchronous implementation
of 1024-bit modular processor for RSA cryptosystem,” in Proc. 2nd
IEEE Asia-Pacific Conf. ASIC, Aug. 2000, pp. 187-190.

[6] V. Bunimov, M. Schimmler, and B. Tolg, “A complexity-effective
version of Montgomery’s algorihm,” in Proc. Workshop Complex.
Effective Designs, May 2002.

[71 H. Zhengbing, R. M. Al Shboul, and V. P. Shirochin, “An efficient
architecture of 1024-bits cryptoprocessor for RSA cryptosystem based
on modified Montgomery’s algorithm,” in Proc. 4th IEEE Int. Workshop
Intell. Data Acquisition Adv. Comput. Syst., Sep. 2007, pp. 643-646.

[8] Y.-Y. Zhang, Z. Li, L. Yang, and S.-W. Zhang, “An efficient CSA
architecture for Montgomery modular multiplication,” Microprocessors
Microsyst., vol. 31, no. 7, pp. 456-459, Nov. 2007.

[9]1 C. Mclvor, M. McLoone, and J. V. McCanny, “Modified Montgomery

modular multiplication and RSA exponentiation techniques,” IEE Proc.-

Comput. Digit. Techn., vol. 151, no. 6, pp. 402—408, Nov. 2004.

S.-R. Kuang, J.-P. Wang, K.-C. Chang, and H.-W. Hsu, “Energy-efficient

high-throughput Montgomery modular multipliers for RSA cryptosys-

tems,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 11,

pp- 1999-2009, Nov. 2013.

J. C. Neto, A. F. Tenca, and W. V. Ruggiero, “A parallel k-partition

method to perform Montgomery multiplication,” in Proc. IEEE Int. Conf.

Appl.-Specific Syst., Archit., Processors, Sep. 2011, pp. 251-254.

J. Han, S. Wang, W. Huang, Z. Yu, and X. Zeng, “Parallelization of

radix-2 Montgomery multiplication on multicore platform,” IEEE Trans.

Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 12, pp. 2325-2330,

Dec. 2013.

P. Amberg, N. Pinckney, and D. M. Harris, “Parallel high-radix

Montgomery multipliers,” in Proc. 42nd Asilomar Conf. Signals, Syst.,

Comput., Oct. 2008, pp. 772-776.

G. Sassaw, C. J. Jimenez, and M. Valencia, “High radix implementation

of Montgomery multipliers with CSA,” in Proc. Int. Conf. Microelec-

tron., Dec. 2010, pp. 315-318.

A. Miyamoto, N. Homma, T. Aoki, and A. Satoh, “Systematic

design of RSA processors based on high-radix Montgomery multipliers,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 19, no. 7,

pp. 1136-1146, Jul. 2011.

S.-H. Wang, W.-C. Lin, J.-H. Ye, and M.-D. Shieh, “Fast scalable

radix-4 Montgomery modular multiplier,” in Proc. IEEE Int. Symp.

Circuits Syst., May 2012, pp. 3049-3052.

J.-H. Hong and C.-W. Wu, “Cellular-array modular multiplier for fast

RSA public-key cryptosystem based on modified Booth’s algorithm,”

IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 11, no. 3,

pp. 474484, Jun. 2003.

F. Gang, “Design of modular multiplier based on improved Montgomery

algorithm and systolic array,” in Proc. Ist Int. Multi-Symp. Comput.

Comput. Sci., vol. 2. Jun. 2006, pp. 356-359.

G. Perin, D. G. Mesquita, F. L. Herrmann, and J. B. Martins,

“Montgomery modular multiplication on reconfigurable hardware: Fully

systolic array vs parallel implementation,” in Proc. 6th Southern

Program. Logic Conf., Mar. 2010, pp. 61-66.

A. Cilardo, A. Mazzeo, L. Romano, and G. P. Saggese,

“Exploring the design-space for FPGA-based implementation of RSA,”

Microprocessors Microsyst., vol. 28, no. 4, pp. 183-191, May 2004.

D. Bayhan, S. B. Ors, and G. Saldamli, “Analyzing and comparing the

Montgomery multiplication algorithms for their power consumption,” in

Proc. Int. Conf. Comput. Eng. Syst., Nov. 2010, pp. 257-261.

C. D. Walter, “Montgomery exponentiation needs no final subtractions,”

Electron. Lett., vol. 35, no. 21, pp. 1831-1832, Oct. 1999.

(10]

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Shiann-Rong Kuang (M’09) received the
B.S. degree from National Central University,
Zhongli, Taiwan, in 1990, and the M.S. and
Ph.D. degrees from National Cheng Kung
University, Tainan, Taiwan, in 1992 and 1998,
respectively, all in electrical engineering.

He is currently an Associate Professor with the
Department of Computer Science and Engineering,
National Sun Yat-sen University, Kaohsiung,
Taiwan. His current research interests include
low-power/high-performance VLSI architectures for
public-key cryptosystems, and digital signal processing systems.

.

KUANG et al.: LOW-COST HIGH-PERFORMANCE VLSI ARCHITECTURE FOR MONTGOMERY MM

Kun-Yi Wu received the B.S. degree from Tunghai
University, Taichung, Taiwan, in 2005, and the
M.S. and Ph.D. degrees in computer science and
engineering from National Sun Yat-sen University,
Kaohsiung, Taiwan, in 2007 and 2014, respectively.
He is currently a Senior Engineer with Nuvoton
Technology Corporation, Kaohsiung. His current
research interests include VLSI design, low-power
design, heuristics, and optimization algorithms.

443

Ren-Yao Lu received the B.S. and M.S. degrees
in computer science and engineering from National
Sun Yat-sen University, Kaohsiung, Taiwan, in 2012
and 2014, respectively.

His current research interests include VLSI archi-
tectures for public-key cryptosystems and low-power
design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

